














highly variable PCR efficiencies (Figure 5A, left). When
the W-o-L is set per amplicon, the variability between
individual PCR efficiencies is significantly reduced
(Figure 5A, right) and neither amplicon showed a differ-
ence in PCR efficiencies between Control and Huntington
patients (Supplementary Figure S4B). For both ampli-
cons, the frequency distribution of the observed PCR effi-
ciencies is normal and symmetrical around the mean PCR
efficiency (Figure 5C). This justifies the use of the mean of
these efficiencies as an estimate for the true PCR efficiency
per amplicon. For further discussion, the efficiency values
were also determined by setting a common window for
both amplicons (Figure 5A, middle) and a common

(mean) PCR efficiency (EC) was calculated, thus ignoring
the amplification difference between amplicons.

The variability in estimated starting concentrations
(Figure 5B) is not statistically different between the differ-
ent W-o-L settings but there appears to be slightly less
variation in the analysis in which a common efficiency is
used (Figure 5B, middle). However, when for each sample
the ratio of the two starting concentrations is calculated,
the individual and the amplicon efficiencies result in sim-
ilar ratios, with a larger variability for the individual effi-
ciencies (Figure 5D, left and right). The ratios resulting
from the common efficiency are significantly lower
(Figure 5D, middle), which illustrates that ignoring the

Figure 5. Comparison of the use of individual, common or amplicon-specific PCR efficiencies. (A) PCR efficiency values for ATG5 (gray) and
PSMB5 (white) in controls and Huntington patients were based on the individual sample (individual window), a W-o-L for all samples from both
amplicons (common window) and a W-o-L set for each of the two amplicons (amplicon window). For each amplicon, the variation in PCR values
was highest in individual windows and lowest when a W-o-L per amplicon (F-test, P< 0.001 for both amplicons) was used. The mean efficiency per
amplicon did not differ between the three W-o-L settings (one-way ANOVA; P=0.183 and P=0.101, respectively) but for all windows the
efficiencies of the two amplicons differed significantly (t-test: all P< 0.0001). EC indicates the common PCR efficiency that results when the difference
between amplicons is ignored. (B) Starting concentrations (N0 expressed in arbitrary fluorescence units) in brain tissue for both amplicons in Controls
and Huntington patients calculated with the individual, common, and amplicon efficiency. There is no significant difference between the variation in
N0 values per amplicon and experimental group although the variation is lowest when the common PCR efficiency was used. For both amplicons, the
starting concentrations are significantly lower when the results were obtained with a common efficiency (t-test, P� 0.001 for both amplicons and
comparisons). The N0 values do not differ when they were obtained with individual or amplicon efficiencies (t-test, P=0.916 and P=0.994 for
ATG5 and PSMB5, respectively). (C) Frequency distributions of the individual PCR efficiency values determined with a W-o-L per amplicon. The
distribution of efficiency values is symmetrical and normally distributed (Shapiro–Wilk test; P=0.933 and P=0.478 for ATG5 and PSMB5,
respectively). (D) When the gene expression ratio (PSMB5/ATG5) in Controls and Huntington patients is based on the N0 values calculated with
the individual or the amplicon efficiency, the average ratios are similar (dotted lines), but the variation in the ratios is significantly reduced when the
amplicon efficiencies are used [F-test on log(ratio); P=0.009]. When the expression ratio is calculated with the common efficiency the average ratio is
significantly biased (t-test; P< 0.0001 compared to both the individual and the amplicon efficiency results). This bias results from ignoring the
difference between the amplicon efficiencies (Box 1; Equation 7).
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difference in PCR efficiency gives rise to biased ratio
results. The magnitude of this bias depends on the relative
difference between the amplicon efficiencies and the
common efficiency, as well as on the Ct values of the
two amplicons in the ratio (Equation 7).

Alternative data analysis approaches

The efficiency value used in the qPCR data analysis has to
be derived from the observed amplification data. Some
papers report that a ‘mean’ efficiency can be calculated
from the slope of a standard curve, which is a plot of
observed Ct values versus the log-concentration of a
serial dilution of a standard sample (Figure 6A and 6B)

(2,8,25). The regression line fitted to these data points is
then described by the equation Ct=log(Nc)/log(E) � 1/
log(E)� log(N0) which is Equation 2, log-transformed and
rearranged to show the linear dependence of Ct on
log(N0). However, this equation does not describe a
straight line with a fixed slope when the amplification
efficiencies of the samples are not all equal (18). In that
case, the presence of the log(E) variable in both the slope
and intercept term of the above equation will result in a
standard curve-derived efficiency that does not represent
the true mean PCR efficiency of the samples (Figure 6C)
(15,26). Accordingly, several authors reported that the
mean of the individual PCR efficiencies gave less biased
results than a standard curve-derived efficiency (10,11,26).

Figure 6. Bias in starting concentrations introduced by standard curve-derived PCR efficiency values or nonlinear analysis procedures. (A) PCR
amplification curves of a serially diluted brain tissue sample (4 steps of 10 times dilution; 5 replicates per dilution) after baseline correction (see also
Supplementary Figure S3). (B) The standard curve scatter plot shows the Ct values plotted versus the known log-concentration of each serial dilution.
This series of five dilutions, measured in five replicates per dilution, was used to construct 3125 (=55) standard curves with one measurement per
dilution. (C) Frequency distribution of the efficiency values derived from the slopes of the 3125 standard curves. The diamond indicates the efficiency
value derived from the slope of the regression line fitted to all 25 observations. Inset: The individual efficiencies of the 25 amplification curves,
calculated from the data points in a common W-o-L. The arrow marks the mean of these individual PCR efficiencies. (D) Starting concentrations
(N0) calculated with the mean of the individual efficiency values (C; arrow in inset). Results were expressed relative to the mean N0 value of the
undiluted samples. The graph shows that these N0 values (grey circles) show a good correlation with the input values (observed = 0.962 � input;
R2> 0.999). The N0 values calculated with the minimum (white circles) or maximum (black circles) efficiency derived from the standard curves show a
positive or negative bias, respectively. (E) The dilution series was analyzed with LinRegPCR (15) and with the Real-time PCR Miner application (7).
Miner performs a nonlinear fit of Equation 4 (Box 1) to a subset of raw data points in the exponential phase. The PCR efficiency values resulting
from Miner and LinRegPCR are plotted (filled and open circles, respectively). The Miner results show an increasing PCR efficiency with lower input
concentrations (P< 0.001), LinRegPCR results do not (P=0.06). (F) Starting concentrations (N0) for the serial dilution dataset calculated by Miner
(open circles). The solid line is the regression through the starting concentrations observed with LinRegPCR (D; gray circles). The Miner results show
an increasing negative bias with lower input concentrations.
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A similar result was observed for the serial dilution dataset
in this study (Figure 6D).
Data analysis methods that are based on the application

of linear regression algorithms (10,15) require baseline
subtraction before the logarithmic transformation because
of the fit of the logarithm of Equation 1 to a subset of data
in the exponential phase. In contrast, analysis methods
based on nonlinear curve fitting do not require such an
a priori baseline subtraction because the fitted mathemat-
ical models contain an additive term (i.e. y0 or Fb) that
represents a constant (6,27,28) or cycle-dependent baseline
(5,19). These algorithms were applied to raw data (5) as
well as data that were baseline corrected by the system
software (6,20,28,29). In the latter papers the baseline
term is, therefore, ignored (or set to zero) in the derivation
of additional equations. This practice might lead to the
erroneous opinion that these analysis approaches are inde-
pendent of the proper handling of the fluorescence
baseline.
Several authors use a sigmoid or logistic curve fit to

select the data points in the exponential phase and then
use nonlinear curve fitting to fit the exponential equation
[FC=Fb+F0�EC (Equation 4)] to determine the PCR
efficiency E (5,7). The start of the dataset used for this fit is
defined as the first point above the ground phase noise
which leads to an overestimation of the baseline parameter
(Fb). The risk implied in the direct fitting of Equation 4 is
that the balance between the two additive parts of this
equation is determined by the input concentration of
the amplicon (F0); when the baseline is overestimated,
the second term in the equation has to compensate.
Especially, for low starting concentrations this compensa-
tion has to be found in a high efficiency value. Examples of
the resulting upward trend of efficiency values with
decreasing starting concentration can be found in litera-
ture, e.g. (19,24). The application of this nonlinear fit [i.e.
Miner (7)] to the serial dilutions dataset also shows such a
relation between input concentration and PCR efficiency
(Figure 6E). Starting concentrations, calculated with these
efficiency values, show an increasingly strong negative bias
with lower input concentrations (Figure 6F). The same
data were analyzed with the method described in this arti-
cle and show a constant PCR efficiency, irrespective of the
input concentration (Figure 6E).
The nonlinear fit of the exponential equation

(Equation 4) (5,7,24) differs from the method described
in the current article only because we propose a two step
approach: first find an estimate for the baseline value and
then fit the PCR amplification equation (Equation 1) to
the baseline-subtracted data. The logarithmic approach
used in our baseline estimation method gives more
weight to the low, close to baseline, observations; con-
structing a straight line down from the start of the plateau
phase thus leads to a more precise estimate of the baseline.

DISCUSSION

Currently, the mainstream of analysis of qPCR data is
based on the Ct value of each sample and a PCR efficiency
value per amplicon. Application of a calculation equation

derived from Equation 1 then leads to an estimate of the
starting concentration expressed in arbitrary fluorescence
units or an estimate of the ratio between two starting
concentrations of the transcript-of-interest (Equation 2
and Equations 3B or 3C, respectively). This article deals
with the analysis of qPCR data resulting from the mon-
itoring of DNA binding dyes like SYBR Green I, but most
of the principles discussed in this article also apply to data
collected with other fluorescent chemistries (e.g. hydrolysis
probes). However, analysis of such data sets requires extra
data processing steps that are not discussed in this text.

Analysis of qPCR data requires the derivation of a PCR
efficiency value from the observed data. This article shows
that the observed PCR efficiency is strongly influenced by
small errors in the applied baseline correction. As
described, it proves impossible to estimate a baseline
value from the so-called ground phase data because the
source of this fluorescence is not clear. The main source of
baseline fluorescence is unbound fluorochrome (e.g.
SYBR Green), which is not fully nonfluorescent (4).
However, baseline fluorescence also depends on sample
dilution, and thus on total cDNA concentration, and on
primer concentration (Figure 1B). Together with the uni-
dentified interactions between those fluorescence sources,
the prediction and modeling of baseline behavior is cur-
rently unfeasible. Our conclusion that there is not enough
ground for the development of an algorithm to determine
the baseline from the ground phase data is in line with the
findings of others (7).

The baseline estimation algorithm described in the
current article is based on the kinetic model of PCR ampli-
fication (Equation 1) and a constant PCR efficiency.
Cycle-dependent changes in PCR efficiency are predicted
by sigmoid models used in qPCR analysis (20,28,29). The
use of such sigmoid models is not based on biophysical/
biochemical considerations of PCR kinetics, but mainly
on their good fit to raw qPCR data. Recent papers show
that despite their overall good fit, these models do not fit
well to the exponential phase data (7,29). Therefore, these
‘empirical’ models do not provide a solid basis for
modeling of the behavior of the PCR efficiency during
the PCR reaction. On the other hand, it was established
that, when modeling PCR as a statistical branching
process, PCR efficiency is constant from the first cycle
until the beginning of the plateau phase (30). A modeling
study based on kinetic annealing confirmed this notion
(23). Moreover, the N0 value estimated with Equation 2,
at large enough Ct, has been shown to be an unbiased
estimate of the real starting amount (22).

With a constant PCR efficiency the value of each data
point up till the start of the plateau phase is the sum of the
baseline fluorescence and an exponentially increasing
amplicon-dependent fluorescence (Equation 4). An algo-
rithm that searches for a baseline value that results in the
longest straight line of data points when plotted on a semi-
logarithmic scale, isolates the exponentially increasing
part of the observed fluorescence values. This algorithm
requires a sufficiently large baseline-to-plateau ratio as
well as a low observation noise. In datasets that do not
fulfill these requirements a reliable straight line in the log-
linear phase will not be found. The baseline value can be
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lowered by lowering the primer concentration (Figure 1B);
observation noise can be reduced by setting a fixed,
instead of an adaptive, exposure time in the qPCR appa-
ratus. Note that the baseline estimation algorithm does
not include a ‘goodness-of-fit’ criterion. The chosen algo-
rithm ensures that points at lower cycle numbers are only
included as long as they randomly deviate from the
straight line defined by the points in the upper part of
the exponential phase. Such a provision would not be
possible when the algorithm includes a ‘goodness-of-fit’
criterion for the whole log-linear phase.

Even after minimizing PCR efficiency variability and
setting of a W-o-L per amplicon, similar samples show
slightly different observed PCR efficiencies. To the best
of our knowledge, no sample-dependent PCR efficiency
differences have ever been reported (10,31). Variability
of the PCR efficiency values has been attributed to a lim-
ited precision of individual data (12) and thus reflects
mainly a statistical error and not a real difference (16).
Accordingly, most researchers choose to use a fixed or
the mean efficiency per amplicon in their analysis of
qPCR data. The symmetric distribution of the individual
efficiency values (e.g. Figure 5B and inset of Figure 6C)
justifies using the arithmetic mean efficiency. Although the
use of a fixed PCR efficiency for all samples per amplicon
is well supported, it is still important to use an efficiency
value that represents the true efficiency. Equation 7
shows that the bias in the expression ratio resulting from
using a common efficiency value for two amplicons,
instead of the amplicon-specific efficiencies, depends on
the relative difference in efficiencies as well as the Ct

values of both samples. An example of such a bias is illu-
strated in Figure 5D.

Based on the results and considerations in the current
paper, the LinRegPCR analysis program (15) has been
updated. Although this updated version of the program
can be used in a ‘load-and-click’ mode, the different vari-
ation sources in qPCR analysis make that no analysis
system can be used as a black box. Every user of qPCR
should stay aware of hitherto unknown variables affecting
the analysis. The experimental set-up should be aimed at
recognizing the variables of interest and should enable the
analysis of the significance of such variables. Analysis sys-
tems cannot relief the researcher of this task.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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